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Embedding of Dynamical Symmetry GroupsU (1, 1)
and U (2) of a Free Particle onAdS, and S into
Parasupersymmetry Algebra

H. Fakhri %2 and J. Sadeght-?

Using two different types of the laddering equations realized simultaneously by the
associated Gegenbauer functions, we show that all guantum states corresponding to the
motion of a free particle oAd $ andS? are splitted into infinite direct sums of infinite-

and finite-dimensional Hilbert subspaces which represent Lie algafitas) andu(2)

with infinite- and finite-fold degeneracies, respectively. In addition, it is shown that the
representation bases of Lie algebras with rank 1 gl€2, C), realize the representation

of nonunitary parasupersymmetry algebra of arbitrary order. The realization of the
representation of parasupersymmetry algebra by the Hilbert subspaces which describe
the motion of a free particle oAd$ and S? with the dynamical symmetry groups

U(1, 1) andU(2) are concluded as well.

KEY WORDS: dynamical symmetry; parasupersymmetry algebra; Lie algebra; shape
invariance.

1. INTRODUCTION

Initially the factorization method has been suggested by Darboux. The gen-
eralization of the method was provided by Smtlinger (1940, 1941a,b) in the
context of quantum mechanics. Infeld and Hull (1951) in their review article have
shown a large variety of second-order differential equations with boundary con-
ditions set in six different types of factorization (the details of the connection of
those to each other have been considered in the recent articles (Del Sol Mesa and
Quesne, 2000, 2002)). On other hand, serious efforts of physicists for describing
unified of basic interactions in nature have brought them up to the result in which
supersymmetry is one of the requirement ingredient for this approach. The idea
of supersymmetry in context of quantum mechanics were first studied by Nicolai
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(1976) and Witten (1981) and later by Cooper and Freedman (1983). At this time,
Gendenshtein forwarded the concept of shape invariance in the framework of super-
symmetric quantum mechanics (1983). From his idea, the supersymmetric partner
potential corresponding to an original potential has a same spatial functionality
with it, so that the suitable parameters just have shifted. He has shown that for
any shape-invariant potential, quantum states of consecutive spectral can be cal-
culated by algebraic method. Later on, a list of shape-invariant potentials derived
and it has shown that their eigenstates and scattering matrix can be calculated by
the algebraic method (Coopet al, 1988; Dabrowskat al., 1988; Duttet al,

1986; Khare and Sukhatme, 1988). Frequently, it was found out that factorization
method of Infeld and Hull is related to the shape-invariant potentials formalism in
the context of supersymmetric quantum mechanics (Infeld and Hull, 1951). Till
now, several studies on the one-dimensional shape invariant potentials have been
accomplished (Adrianoet al, 1984; Balantekin, 1998; Balantekat al., 1999;
Carinena and Ramos, 2000a,b; Coogteal., 1995; Chuan, 1998; Das and Huang,
1990; Duttet al, 1988; Fukui and Aizawa, 1993; Gendenshtein and Krive, 1985;
Haymaker and Rau, 1986; Salamoson and van Holten, 1982; Sukumar, 1985).
Recently, by application of master function theory and also main and secondary
guantum numbers, i.e1andm, one-dimensional shape invariant models have been
classified in two different classes (Fakhri, 2003). The first and second classes are
shape invariant with respect toandm, respectively. The recent subject is one of

the most powerful results for one-dimensional models in context of supersymme-
try, because shape invariance not only repres&nts 2 supersymmetry algebra
(Jafarizadeh and Fakhri, 1977) but also parasupersymmetry algebra of arbitrary
order p (Jafarizadeh and Fakhri, 1998).

The theory of parasupersymmetric quantum mechanics is about parafermion
and paraboson particles, fermions and bosons obey ordinary statistics and para-
bosons and parafermions are assumed to obey an intermediate kind of statis-
tics, called parastatistics (Green, 1953; Ohnuki and Kamefuchi, 1982; Volkov,
1960). For symmetry between boson and parafermion in pase parastatis-
tics, first time Rubakov and Spiridonov suggested parasupersymmetry algebra of
order p = 2 (Rubakov and Spiridonov, 1988) which was extended by Khare for
arbitrary orderp (Khare, 1992, 1993). There are useful discussions about para-
supersymmetry algebra of order= 2 in Mostafazadeh (1996, 1997). In addi-
tion to representation of Khare—Rubakov—Spiridonov parasupersymmetry algebra
(Jafarizadeh and Fakhri, 1998), shape invariance of one-dimensional solvable mod-
els leads to derivation of two-dimensional quantum mechanical models including
dynamical symmetry groups, which are also embedded into parasupersymmetry
algebra of arbitrary ordep.

In this paper, introducing the associated Gegenbauer functions in terms of
two nonnegative integersandm with n > 0, 0 < m < n, we factorize their cor-
responding differential equation as shape invariance equations with respect to
the parametera andm. Then, we determine the normalization coefficients and
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consequently their norms with respect to an appropriate inner product, so that the
associated Gegenbauer functions satisfy the laddering relations with respect to
andm, simultaneously. On the basis of representation of the laddering equations
with respect tsm\m, we construct the generators of Lie algeb(a, 1)\u(2) to-
gether with infinite\(n + 1)-dimensional representation spd¢g\ H,. It is also
shown that the Casimir operator of the Lie algebfa, 1)\u(2) is the Hamil-
tonian operator corresponding to the motion of a free particldd$\ S* with
infinite-\(n 4 1)-fold degeneracy it \ H,. In this manner, all permissible quan-
tum states of a free particle okd S\ S are splitted to an infinite direct sum of the
Hilbert subspacé{,\H,. Using laddering relations with respecttin we intro-

duce the differential operators of order 1 such that the Hilbert subs@ageX

map to each other. Meanwhile, we show thHR, C), i.e., complexification of Lie
algebras with rank 1, represents Kahre—Rubakov—Spiridonov nonunitary parasu-
persymmetry algebra of arbitrary ordpr For this, we use Cartan basks, K_

andKg3 of Lie algebragl(2, C) to make parafermionic and bosonic operators, and
also use the representation bases of this algebra to make parastates. We show that
the components of bosonic operator participate i 1 eigenvalue equations with

one common eigenvalue but with tipet+ 1 successive representation bases of Lie
algebragl(2, C). Each of real forms or Lie subalgelgf2, C) which are included

the generatorK,, K_ and K3 can represent the Kahre—Rubakov—-Spiridonov
nonunitary parasupersymmetry algebra. As application, we can also allocate our
discussion to realize the representation of parasupersymmetry algebra by the bases
of Hilbert subspace®{,\Hn, corresponding to the motion of a free particle on
Ad S\ S with dynamical symmetry group (1, 1)\U (2).

2. SHAPE INVARIANCE AND LADDERING EQUATIONS WITH
RESPECT TOn AND m FOR THE ASSOCIATED
GEGENBAUER FUNCTIONS

2.1. The Gegenbauer Polynomial®™(x)

For given real parametér> —1 and the real variable-1 < x < +1, the
differential equation of Gegenbauer polynomiBf&)(x) is known as

(1= x)P/P(x) = 20 + X PP (X) +n2r +n+ PP (x) = 0. (1)

One may deduce that the Gegenbauer polynonitx) have the Rodrigues
representation as follows (Nikiforov and Uvarov, 1988)

d n
P00 = 00 (55) @0 @

wherea, (1) is areal normalization coefficient. Using the Rodrigues representation
(2), one can calculate the coefficient of the highest powerfof the Gegenbauer



460 Fakhri and Sadeghi

polynomials of degrea as

r2r+2n+1) _
PP (x) = an(M)(=1)" —————2x" + O(x" ). 3
00 = (-1 o X+ 0T ®3)
It is easy to show that the polynomia* (x) with differentn’s, respect to the
inner product with weight function (& x?)* in the intervalx € (-1, +1) are
orthogonal. Hence, by choosing the normalization coeffidg(it) as

@r+2n+1)rr+n+1)  hy(n)
2) = : 4
an(A) \/ 22+20+1T (n 4 1) C(A+n+1) (4)
we can see that
+1
/ POx)PP(x)(1 — X2 dx = 8pyh2(1) N, >0, ®)

whereh, (1) is norm of the Gegenbauer polynomR{f-)(x).

2.2. The Associated Gegenbauer FunctionrB™(x)

By takingm times derivative from the Gegenbauer polynomials differential
equation (1) and change of function by multiplicity €1x2)Z, we obtain the
differential equation of the associated Gegenbauer funcmfmﬁx) as

m(2x 4+ m)
1-—x2 )

x P® (x) =0, (6)

(1= x3)P/B(x) — 200 + 1x BA(x) + (n(ZA +n+1)—

which has the following solution:

P = e (8 @y

(1 —x2*2 \dx
= —an_a;kr;(i) 5@ x2) % P (x). (7

The real constard, m(1) is the normalization coefficient of the associated Gegen-
bauer functiorP,ﬁfg](x). By choosingn = 0, itis clear that the differential equation

of the associated Gegenbauer functions (6) is converted to the differential equation
(1) for the Gegenbauer polynomials. If we choose the normalization coefficient
anm(A) as follows

an,m(*) = @n—_m(r + m), ®)
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then from Egs. (5) and (7) one can obtain an inner product between the associated
Gegenbauer functions:

+1
f P® ()P ()L — X2 dx = 8awh2_ (2 + M) =: 8arh2 (1) n, 0" = m.

-1
)

The relation (9) indicates that the associated Gegenbauer functions with the differ-
entn’s but the samen constitutes an orthogonal set. This formulation expresses
thata, o(%) = an(1), hn,o(%) = hn(2), andPY3(x) = P{(x). Therefore, by deter-
mining norm ofP{")(x) ashn (%), norm of P¥) (x) ashn m(A) = hn_m(% + m) are
obtained.

2.3. Shape Invariance and Laddering Equations With Respect to

Substituting the explicit forms of the raising and lowering operators
A (n;x) = (1—x3 % — (2x 4+ n)x,

d
A_(M;x) = —(1— x?) — —nx, 10
(M X) = ~(1—x%) 5~ —nx (10)
as well as the factorization spectrum
E(n, m) = (n — m)(2x + n + m), (11)

for a givenm, we can factorize the associated differential Eq. (6) in form of shape
invariance equations with respect to the parameter
A (M X)A (M X) P (X) = E(n, m)P(x),

A )AL ()PP (x) = E(, mPY (%) (12)

n—

The shape invariance Egs. (12) can be written in the form of raising and lowering
equations with respect to the parameters below

AL (n; x)PY; () = VE(M, mPE(x), (13a)
A_(M x)PE(x) = vEM PP 1 (x). (13b)

Realizing shape invariance Egs. (12) does not impose any condition on the
normalization coefficients, n(A), but realization of the raising and lowering
relations (13) imposes a recurrence relation on these coefficients with respect
ton:

2h+Nn+m a;_1m(A)

) =0y Eom ™ ()
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To get the recurrence relation (14), one has to substitute Eq. (7) in (13a) and then
cancel the factor (& x2)2 on both sides and also compare the coefficients of

in that relation. If we use a similar way for the relation (13b), and compare the
coefficients of the highest power g&fin both the sides, we will obtain a relation
which s justanidentity. By the application of the recurrence relation (14) in several
times for a giverm, we obtain

am,m(A)

) — N\"""Tr(+m+1) rr+n+m+1)
a”*”‘()_<_> F(h+n+1)\ O(n—m+ 1)C(2x + 2m+ 1)

2
n>m. (15)

Exact determining functionallity, m(1) of the parameters, m, and will be
done after the consideration of laddering equations with respect to the
parametem.

2.4. Shape Invariance and Laddering Equations With Respect tm

For a givem, the differential Eq. (6) can be also factorized with respeatto
as the following shape invariance equations

A (m; X) A_(m; X) PY () = e(n, m)PY (),

A_(m; )AL (m; x)PY 5 (x) = e(n, mPY) (), (16)
where
d -1
A (mx)=+v1-x2 ax " %
W e d 2+ m)x
A_(M;X)=—v1—x2 ix + N a7
and
e(n,m)=(n—m+1)(2x + n+ m). (18)

In contrast to the previous case, the raising and lowering operator#\ i.@n; x)

and A_(m; x) are Hermitian conjugate of each other respect to the inner product
(9). The shape invariance Egs. (16) can be written as the raising and lowering
relations of the associated Gegenbauer functions:

AL(m; )P () = Ve(n, mP(x), (19a)
A_(m; x)PYL(x) = ve(n, mPY) _(x). (19b)

In here also, realization of the shape invariance Eqgs. (16) does not impose any con-
dition on thea, (1) but realization of the laddering Egs. (19) imposes a recurrence
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relation with respect tan on the coefficients

anm(2) = —ve(n, Mag,m-1(2). (20)

To prove (20), we must cancel the common factor-(£2)? in every one of
Egs. (19a) and (19b), and then compare the coefficient of the highest poveer

x"Mandx"~™+1, respectively, in both sides of them. For a givetthe recurrence
relation (20) immediately gives

r.+n+m+1)
rn—m+1r@x+2n+1)

an,m(k)=(—1)”‘m\/ an(x) m=<n. (21)

Thus, to satisfy the raising and lowering relations of the parammei&s given in
Eg. (19), we impose additional requirement in (21) on the coefficegntga).

2.5. Simultaneous Realization of Laddering Equations
With Respect ton and m

It is necessary that we notice the relations (15) and (21) in fact are imposed
by the laddering relations (13) and (19). If we compare two different constraints
(15) and (21), then we conclude that

) — ~-1\"VT(@x+2n+1)
a“'“”‘(?) F'(h+n+1)

in which the arbitrary real constafit()) is independent of the parameterand
m. Note that the last equation is also valid fo= m. Thus, using every one of the
relations (15) and (21), we can conclude

(1" \/F(2A+n+m+1)

C() n=0,1,2..., (22

anm(A) = C(x) n=m.  (23)

2T'(A+n+1) 'h—m+1)
To realizeP)(x) = P{(x), inserting the normalization coefficient (23) in (8), it
becomes obvious that the const&{) must satisfy the following condition:

C(L+m)= (_71) C). (24)

Also, using Eg. (23) fom = 0, in the relation (4) and then by imposing its result in
equationh, m(A) = hp—m(A + M), we get the norm of the associated Gegenbauer
functionsP{*) (x) as follows:

22+1
hnm(}) = mc(/\) = hn(2). (25)

Therefore, the necessity of the simultaneous realization of laddering equations with
respect ton andm, i.e., (13) and (19), determines the normalization coefficient
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an,m(A) and the normh, m(2) in terms of the constar@ (i) which is independent

of the parametera andm, as Egs. (23) and (25). This means that the constant
C(1) plays the role of a scale for the norm of the associated Gegenbauer functions
P (x). Note that the normi, m(1) is independent orn.

3. QUANTUM STATES SPLITTING ON THE ENERGY SPECTRAL
OF A FREE PARTICLE ON THE MANIFOLDS Ad$ AND &

The aim of this section is to split quantum states corresponding to the motion
of a free particle on the manifolds of the anti-de Si#&lS and spheres’. It is
shown that all these quantum states split to an infinite direct sum of infinite- and
finite-dimensional Hilbert subspaces. So that, the Hilbert subspaces corresponding
to AdS and S? represent the dynamical symmetry grolipd, 1) andU (2) with
infinite- and finite-fold degeneracies, respectively. Using the change of variables
x = tanhd and x = — cos® and with the help of two new auxiliary variables
0< ¢ < 2rand0< ¢ < 27, one canwrite the following expressions for Egs. (13)
and (19)

Jin—1,m)(AdS) — L)(L/)\),/ E(n, m)|n, m)(Ad), (26a)
n-1
J_|n, my(AdS) — h;_i(l)(t;)\/E(n, m)|n — 1, m)(Ad®), (26b)
and
Liln, m— 1) = /e(n, m)in, m)), (27a)
L_jn, Y& = /e(n, m)In, m — 1)(&), (27b)

respectively, in which the explicit forms of differential operatdrsandJ_ as well
asL, andL_ are given by

N d
J, =€ [— +itanhd— — (1 + Zx)tanhe] ,
90 EP)

) B . ad
J =¢e'¥ [—@ +i tanhoﬁ] , (28)

and

T8 3
L, =€*? i cot®— |,
* [a@) + a¢]

L s [_% +icoto 2. cot@] . (29)

The interval—1 < x < +1 transforms to the intervalsco < 6 < +o0 and
0< © < & by the change of variables= tanh9 andx = — cos®©, respectively.
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We will see soon tha® and¢ as well as® and¢ are two appropriate pairs of
variables for parameterization of a chartAdS and S?, respectively. Therefore,
in Egs. (26) and (27) the kets, m)(*%) and|n, m)*) will be wave functions
corresponding to the motion of a free particle on the maniféld$ and S?:

gnv PY) (tanho)

(AdS) _
In, m) =) (30)
and
) imé P (— cos®
In, m)®) = e nm( ). (31)

N 2r hn(2)
Using the orthoghonallity relation (9), it is easy to prove that the kets
{In, m)(A4%) with n > m} for a givenm, and the ketg|n, m)($) with n > m > 0},
constitute two separate orthonormal sets with respect to the inner products with
measures cosk*~260dody and sif**! ©d©Odg, respectively:

2t ' ) *
(AdS) (n mn, m)(AdS) :Zf / o0 ( dne Pn,m(tanh9)>
0 —00

V27 ha(d)
éne P (tanhe)\  do dg
o @2
V2r  he(d) cost**2¢
= oy n,n >m (32b)

and

m (k)
Sn, min’, M) _/ / (elz¢ Py é(i)m@))
7T

éme PO (~cow)
Ve hn (%)

= Sudmm  N>=m and n' >m. (33b)

) sirft1edode (33a)

So we could construct the infinite- and € 1)-dimensional Hilbert spaces equi-
pped to inner products (32a) and (33a) correspondingd® and S* with the
orthonormal bases as follows, respectively:

Hm = spari[n, m)Ad®y (34)
and
Hp = spari|n, m)& . (35)

It is clear that the operatord, and J_ with respect to the inner product (32a)
are not Hermitian conjugation of each other while the operdtgrandL _ with
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respect to (33a) are adjoint of each other. To complete the above mathematical
structure, we define the following new operators

J3=—ii, l; =1, (36)
dp
and
.0
L3:—|%, IL=1, (37)

which are represented by the Hilbert spatgsandH, as follows:
JsIn, m)(AdS) nin, m)(AdS)
13]n, m)(A9®) — |n, m)(AdS) (38)
and
Lsin, m)©) = min, m),
[ n, My = |n, m)©&). (39)
One can easily conclude that the operatbrsJ_, Js, andl;, aswellad ,, L_,

L3, andl, satisfy the commutation relations of Lie algebté§, 1) andu(2) as
follows:

[J4,0-]=-2F 20 -1, [J3 de] ==+, [J15]=0 (40)
and
[Ly, L] =2L3+2x, [Ls Li]=+Ly, [J,1]=0. (41)

Therefore, the generatods, J_, J3, andl;, aswellad ., L_, L3, andl, of the

Lie algebrasi(1, 1) andu(2) are represented by the bases of infinite- ang ()-
dimensional Hilbert spacés,, andH, as Egs. (26, 38) and (27, 39), respectively.
Now, it is clear that we deal with the discrete representations of the Lie algebra
u(1, 1) which are realized bi}t,. According to these equations, the Hilbert spaces
‘Hm andH,, are invariance under action of the generators of the Lie algeiftad)
andu(2), respectively, i.e.

Ji, ., J3, ly:Hm— Hn m=0,1,2,..., (42)
and
L+,L,, L3, ||_ :Hn—)Hn n=0, 1, 2,.... (43)
The Casimir operator of Lie algebragl, 1) andu(2) can be calculated as
1
Hy =3 [ — 32 — 2205 — S(W)]

1] 92 1 9 9 2/\ +139
|-+ +2x tanh@ — —S(A) |, (44
2 |: 962 " cosit o dg? cosﬁ@ dp X )i| “y
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and
1
o= 2L+ 34 @ DL )
1 82 1 82 0 2ir 9
= = % _(2xa+1)cotO— 2% — S(r
2[ 2 siteig oD% " Gikehs ' Q)]

(45)

whereS()) is an arbitrary function in terms of. Now we are going to compare
Casimir operatorgd; and H_ with general form of Laplace—Beltrami operator
L=-1 DJ-ADjA + V (Klinert, 1990) in terms of metrigjj, gauge potentiahy,

and the scalar potentisf. The covariant derivativd-DjA is expressed in terms of
gauge and Levi-Civita connection; andV; as Df* = V; — i A;. The index]
takes the valueg and ¢, as well as® and ¢ for the Lie algebrasi(1, 1) and
u(2), respectively. If we use the explicit form of the Casimir operatdgsand

H, instead ofL and compare the coefficients of second-order partial derivatives,

then we obtain the induced metrig; d%) andg(s) for two-dimensional ordinary
Riemannian manifolds which have been parameterized by the varialaled ¢
as well as® and¢:

(Ads) _ (1 0 @_(1 O
Yij <O —cosﬁ@)’ 9 _(O Sirf® /- (46)

The nonzero components Christoffel symbols and Ricci tensor corresponding to
the metrics (46) are calculated as

1 .
ro, = 5 sinh2 Iy, =tanh Ry = -1 R,, = coslto,

1 (47)

Top = — sin20 g, =Cot® Rop =1 Ryy =sinf®.
So Ricci scalar curvaturB = g'/ R;; of the manifolds which are described by the
metrics (46) are

RAI®) — 2 R =2 (48)

Therefore, the variable andg, as well as® and¢ via the metricsg{**® and
gl(s) given in (46), describe the Riemannian manifoltsS and S%. It is clear

that the coordinate systerisand¢ as well as® and¢ describe the appropriate
charts for parameterizing one of the connected comporeifisand S? as local,
respectively. Comparing the coefficients of the first-order partial derivatives in the
Laplace—Beltrami and Casimir operators, we get

2. +1
2 (49)

Agz%i(2A+l)tanI’n9 A, =—

—i
Ag = > cot® Ap = —A.
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Hence two forms of magnetic fields corresponding to the components of gauge
potentials (49) vanish

B—%—A”de do + A‘”deAdgo_ (50)

Also, by comparing the remainder of terms in the Laplace—Beltrami and Casimir
operators, the scalar potentialcan be obtained:

v“\d%:%l[1 /\2+S(A)]=>E——d—ve9—o

4 de
s —1 dv
V(S>=7[A(A—1)+S(A)]=>E——%eo—0 (51)

The Casimir operatorkl; andH, satisfy the following eigenvalue equations:
-1
HyIn, m) @9 = E;(m)in, m*9S) Ey(m) = —-[m(m+21) + S3)] n>m,
(52)
(s — (s - 1
Hiln, )= = E;(m)in, m)=" EL(n) = SI(n+ D +24) — S m=n.

(53)

Sothe Casimir operatots; andH, are Hamiltonians corresponding to the motion
of a free particle oAdS andS?, so that all bases of the Hilbert spadég and,,
are eigenstates of them with the same eigenvdiém) andE, (n), respectively.
These equations mean that the representation of the Casimir opefatansiH,_

by the Hilbert space®(,, andH, have the dynamical symmetry groupg1, 1)
andU (2) with the infinite- andif + 1)-fold degeneracies, respectively,

AID (', miHyIn, M)A = Ej(m)syn 0, 0" = m, (54)
&) n, m'HL N, M) = EL (N)dmym M, M’ < n. (55)

Now we can introduce the Hilbert spac&*4®) andH(%) as infinite direct sums
of the infinite- and 1§ 4+ 1)-dimensional Hilbert spacé¢,, andH,,, respectively:

H(ADS) _ @Hm = span{|n, m)(AdS)}n>m>o, (56)
m=0 o
H(Sz) = @Hn = spar{|n, m)(SZ)}nzmzo' &7
m=0

The relations (56) and (57) represent quantum states splitting on the same energy
spectral corresponding to the motion of a free particle on the manifad@sand
& into the representation spaces of the Lie algeb(as1) andu(2), respectively.
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Now we try to find first-order differential maps that one of them maps the
Hilbert subspac@(m,_1toHm (andH,,_; toH,) and other one maps the Hilbert sub-
space€Hm to Hm_1 (andH, to Hy_1). Writing the operatorg\ . (m; x), A_(m; X),
(and A, (n; x), A_(n; x)) in terms of the variablé (and®) as

A, (m;tanhg) = cosm% + (m—1) sinhg,

A_(m;tanhg) = — coshea% + (21 4+ m) sinhe, (58)
and

. a
A, (n; —cos®) = sm@E + (21 + n) cosO,

A_(n; —cos®) =

(59)

we can conclude that they map Hilbert subspaigs(and,) to each other as
follows:

A (m;tanhd) : Hyn_1 —> Hm,

A_(m;tanh) : Hy —> Hm_1, (60)
and

A, (n; —cosO®) : Hp—1 —> Hp,

A_(n; —cos®) : Hy, — Hnp_1. (61)
Using Egs. (19) and (13), one can obtain the following rules for these mappings:

A, (m;tanhd)|n, m — 1)(A%) — /e(n, m)|n, m)(Ad9),

A_(m; tanhg)|n, M%) = /e(n, m)|n, m — 1)(AdS) (62)
and
A.(n; —cos®)n — 1, my) = %,/ E(n, m)[n, m)(,
n-1
A_(n; — cos®)|n, m)S) = hr:zi;)\/ E(n, min—1,mS).  (63)

The differential operatord,(m;tanhd), A_(m;tanhg), and (A, (n; — cos®),

A_(n; — cos®)) map quantum states corresponding to the motion of a free particle
on AdS (andS?) from a Hilbert subspace to an another Hilbert subspace so that
their energies change. While according to equations (26), (52), and (27, 53) the
operatorsl,, J_, (andL ,, L_) transform these quantum states inside of a Hilbert
subspace so that their energies remain without change.
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Equations (26b) and (27a) show that the lowest and highest gtates(Ad%)
and|n, n)® belonging toH, andH,, satisfy the following first-order differential
equations

J_|m, my(Ad®) — o, (64)
and
L.In,n)&) =0, (65)
with the following solutions
(AdS) _ am,m(}\) emv
m, m = , 66
| ) V2rhm(r) cosh' 6 (66)
and
() _ ann(1) ing o
n,n =——"_€"sin"B. 67
In, n) 2 () (67)

From the analytic solutions (30) and (31) we can also get the the lowest and the
highest staten, m)(A9%) and|n, n)$) as (66) and (67). So, with the help of (26a)
and (27b), one can obtain the arbitrary quantum states in the framework of the
algebraic manners as

(ads) _ Mm(®) I, m)(Ad®)

I = ) VERmEm =L Emitm -t
(68)
and
In, m)®) = LI, n)®) <n-1 (69)

—Je(n, m+ De(n, m+2)...e(n, n)
Those make sense that all bases of Hilbert spatg®nd,, are generated by

successive action of the operatalrs and L _ on the lowest and highest states,
respectively.

4. EMBEDDING OF LIE ALGEBRA ¢I(2,C) INTO THE
PARASUPERSYMMETRY ALGEBRA

The general Lie algebi@ (2, C) with the rank 1 is the complexification of the
real Lie algebrahy, u(2),u(l, 1),iso(2) & u(1),su(2) @ u(l) andsu(1, 1) u(l).
In this section we use the generators of the Lie algghi@, C) in the Cartan bases
{K,, K_, Kgs, Ik} with the following commutation relations

[K., K_] = uKs + vlk, (70a)
[Ks, Ki] = Ky, (70b)
[K, k] =0, (70c)
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whereu andv are the real structure constants. It is clear that the commutation
relations (70) in the cases= 0,v # 0, andu = 0,v = 0 are the Heisenberg Lie
algebrah, and Lie algebréso(2) @ u(1), respectively. Also in cases> 0,v # 0,

andu < 0,v # 0they describe the commutation relations of Lie algeb¢@$and

u(l, 1), respectively. In the recent two caseg i$ equal to zero then we will deal
with Lie algebrasu2) & u(1) andsu(1, 1) u(1), respectively. We will also use
representation space of Lie algelgié2, C) combined from basis kets) which

are realizing the representation of Lie algebra as follows:

h
Kol —=1) = Fll\/ Egl(l)“)y
h_
K_|l) = f\/Egl(I)u — 1),

Ksll) = HI),
i) =1). (71)

To construct the correspondence between the parasupersymmetry algebra of ar-
bitrary orderp and Lie algebragl(2,C), we do not use any information about

that doed have up or down limitations. It is clear that for realizing the repre-
sentation (71) by ketg), commutation relations (70b) and (70c) are identically
satisfied, but the commutation relation (70a) imposes the following constraint on
the representation spectrusg, (1) and the structure constantandv:

Eq() — Eqg(l +1)=Iu+v. (72)

In order to realize representation of Lie algeté2, C) by kets|l) in both cases
bounded of down| > r, and bounded of ud, <r (r is an arbitrary positive
integer), using the recurrence relation (72), one can separately obtain the following
same results:

Egi(l) = Eqi(r) — :—ZL(I =) +r — Lu+ 2v]. (73)

We want to show that there is a deep connection between Lie algéf#zC)
with rank 1 and the Khare—Rubakov—Spiridonov nonunitary parasupersymmetry
algebra of arbitrary order, and it is the fact that Lie algepl@, C) is able to
represent parasupersymmetry algebra.

The Khare—Rubakov—-Spiridonov nonunitary parasupersymmetry algebra of
arbitrary orderp with two parafermionic generatof3; and Q, also one bosonic
generatoH is known with the following relations:

QP+ QP Qi+ + QQQY  + QQP =2pQPtH,  (74a)
QP+ Q0 Q1o+ + QQiQY '+ Q1Q) = 2pQYtH,  (74b)
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1 1
T =Qf =0 (740

[H, Q] =[H, Q2] =0. (74d)

Nonunitarity means that parafermio@g and Q. are not Hermitian conjugate of
each other. Therefore, it is not necessary that the bosonic opétasbould be
Hermitian. To realize the algebraic relations (74), let us define firstly the operators
Q1, Q2, andH as matricesf + 1) x (p + 1) with the following elements:

(Qu)ss = K_ds41s, (75a)
(Q2)ss = Ky dsst1, (75b)
(H)sg := Hsdsg, S, =1,2,...,p+ 1 (75c)

The definitions (75a) and (75b) satisfy automatically Eqgs. (74c). We will find
the operatorsHg in the interests of satisfying Eqgs. (74a,b,d). The multilinear
Egs. (74a,b) and also commutation relations (74d) for the generators defined by
(75) lead us to the following equations:

KPK, + KPR K 4 -+ KK, KP™ = 2pKPH,, (76a)
KPPKGK. 4o+ KK KP4 K KP = 2pKP T H,,,  (76D)
KPIKOK, 4+ K KCKP ™ 4 KUKP = 2pKPtH, (76c)
KPK_ + KP'KO K, + -4+ K K KPP = 2pK P TH,, (76d)

and
HsK_ = K_Hsy1,
Hs 1Ki = Ky Hg s=1,2,...,p 77)
To satisfy Egs. (76) and (77), we suggest the dependence of opédtiatdts, . . .,
Hp11 to the generators of Lie algebgh(2, C) as

1
HSZE(K,K++CSK3+ds) S=112='~-1p1

1
Hp+l = E(K_)'_ K_ + Cp+lK3 + dp+1). (78)

Now the coefficientssandds, s = 1, 2,..., p + 1, interms of structure constants
uandv and alsg must be determined so thatthe relations (76) and (77) are satisfied
by the Hamiltoniangs.

The relations (77) impose the following recurrence relations upon on the
coefficientscg andds:

Cst1 = Cs + (1 — Ssp)u,
Osy1 = ds — Cs + (1 — Ssp)v s=1,2,...,p. (79)
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Using the recurrence relations (79) for several times, we get
Cs = (S—1—3dspr)u+cy,
-1
&= —(s—1E-2u+(s—1-dspr)v — (s~ s+

s=1,2...,p+1  (80)

The relations (80) show thatdf andd,; become determined then all the coefficients
¢s andds will be found. SinceH; has been used in the right-hand side of relation
(76c), we may achieve, andd; directly from this relation. It is sufficient that the
commutation relations of Lie algebgh(2, C) given in (70) are repeatedly used:

1
CL = _E(p_ 1)u

dlz—%(p—1)<%(p+1)u+v). (81)

Substituting the results (81) into (80), we obtain

1

1 1
ds = _6(352 — 3sp+ p?+3p—65+2)u— 5(P =25+ 14 2sp)v. (82)
Finally, substituting the relations (82) into (78), we can find the components of
bosonic operator as follows:
1

1 1
Hs = E[KK+ - E(p— 2s+ 1 uKsz — é(352—33p+ p? + 3p — 6s + 2)u

1
_E(p—25+1)v] s=1,2,...,p+1 (83)

Using Egs. (71) and (73), we can easily show that for givemdr, the
operatordHs satisfy the following eigenvalue equations

Hsll +s) = Eqi(l, r, p)Il +5) s=1,2,...,p+1, (84)
where
1 2.2 p 2
Eq(,r, p):Z 2Eqi(r) — (17— +2I+r+|p+§+p+§ u
—(2 —2r+p—|—3)v] (85)

Note that if the representation két$ be asl > r, then we have automatically
| +s>r, whereas if the representation kifsbe ad < r, then we must choose
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kets|l) so thatl + p+ 1 <r. The recent result implies that the eigenvalue of
operatords are independent afand the importance of this more in representation

of nonunitary parasupersymmery algebra of arbitrary order will be appeared. Now
using Eq. (83), we can substitute the explicit form of operakysHp 1, andH,

in Egs. (76a), (76b), and (76d), respectively, and with the long calculation, show
that these equations are also satisfied. To complete this part of our discussion,
the question “How is represented the nonunitary parasupersymmetry algebra of
arbitrary order?” should be answered. For givandr withl >rorl + p+1<r,
parastate of nonunitary parasupersymmetry algebra of arbitrary pidetefined

as follows:

I+ 1)
I+ 2)

Mess= | T+3 |, (86)

I+ p+1)

By using Egs. (75c) and (84), it becomes obvious that the parafifatgsepresent
the bosonic operatdd as below

H“)pss: Egl(l, r, p)“)pss (87)
Defining the matricesf+ 1) x (p+1),q;,i =1,2,..., p+ 1, as
@)k = 8ij ik, (88)

we obtain the following eigenvalue equations for parafermionic oper&oend
Q2

i—1 h|+i+1

P, h
Ql“)pss: ( A vV Egl(I +i + 1)qi> |I)pss

P hyyi .
Qall)pss = (Z'*—fl E(|+|+1)qi+1) 1) pss (89)
i=1

It is evident that the algebraic relations (74), for the parafermionic gener@tors
andQ; and also bosonic generatdrgiven in Egs. (75) and (83), are also satisfied

on the parastattt),ss It should be noticed that the technique used above does
not need to make generators of parasupersymmetry algebra by the gehgrator
This means that i = O it depends on weather> 0 or u < 0, automatically

the generators of Lie algebrag2) orsu1, 1) for realizing the representation of
parasupersymmetry algebra are used. All things show that the nonunitary parasu-
persymmetry algebra of arbitrary ordeis represented by each of real forms of Lie
algebragl(2, C), including Lie algebrai(2) and its subalgebrsu2), Lie algebra
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u(1, 1) and its subalgebrsu(1, 1), Lie algebraso(2) & u(1), and its subalgebra
iso(2), and also, contracted forgi(2, C), i.e., hs.

If, instead ofgl(2, C), we consider Lie algebrag1, 1) andu(2) as (40) and
(41) with representations (26), (38), and (27), (39), then our discussions are as-
signed to the motion of a free particle &S and S°. We choose the generators
Ky, Ko, Ks, Ik} as{dy, I, I3, I3} and{L , L_, L3, I } forthem;l =n,r =
mn>m,andl =m,r =nm<nu=-2,v=-21—1,andu=2,v =2}
Eg()=E(M,m), Egu(r)=EmMm)=0 and Eg(l)=¢e(n,m) = Eq()=
e(n, n) = 2(x + n); hy = hy(}) andh, = 1; respectively. Therefore, the Hilbert
subspace®(,, andH,, i.e., quantum states corresponding to the motion of a free
particle onAdS and $? with the dynamical symmetry groups(1, 1) andU (2),
can be used for realizing representation of nonunitary parasupersymmetry algebra
of arbitrary ordergp and p < n, respectively.
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